微分方程公式总结

2023-02-23 16:09:39   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《微分方程公式总结》,欢迎阅读!
微分方程,公式,总结


g(y)dyf(x)dx

1.可分离变量的微分方程 初值问题

yxx0y0

的解为 yg(y)dyxf(x)dx

0

0

yx

2.一阶线性微分方程

dy

P(x)yQ(x) 的通解公式为dx

P(x)dxP(x)dx

ye(Q(x)edxC)

dy

P(x)yQ(x)

3.初值问题 dx 的解为

yxx0y0

P(x)dxP(x)dxx0yex0(Q(x)edxy0)



xx0

x

x

dyyydydu()uyux于是有ux4.齐次型方程

xdxdxdxxdu

(u)这是一个可分离变量的微分方程。 便得到uxdx

分离变量后积分

dudx



(u)ux

dyaxbyca1b1

其中 5.可化为齐次型的方程

dxa1xb1yc1ab

cc10时方程是齐次型的,否则是非齐次型的。在非齐次型的情形下,可用如下的代换把它化为齐次型的。作代换

xXh,yYk

ahbkc0dYaXbY(ahbkc)

再令 可定出hk dXa1Xb1Y(a1hb1kc1)a1hb1kc10

6.伯努利方程

作代换zy

1

dy

P(x)yQ(x)y (0,1) dx

dzdy(1)y ,于是有 dxdx


dz

(1)P(x)z(1)Q(x) ,这是一阶线性方程。 dx

7.可降阶的二阶微分方程

(1) y''f(x)

(2) y''f(x,y') y'p 那么y''

dp

p' 从而方程就化为dx

p'f(x,p) 这是一个关于变量xp的一阶微分方程。如果我们求出

它的通解为y'p(x,C1),那么再通过积分,可得原方程的通解

y(x,C1)dxC2

(3) y''f(y,y') y'p y''

dpdpdydpp dxdydxdy

dp

f(y,p) 这是一个关于变量y从而方程就化为pp的一阶微分dy

方程。如果我们求出它的通解y'p(x,C1) 那么分离变量并两端

dy

xC2 积分,可得原方程的通解为(y,C1)


本文来源:https://www.wddqxz.cn/49f47dd09b8fcc22bcd126fff705cc1754275f41.html

相关推荐