0是最小的自然数

2023-12-19 13:18:11   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《0是最小的自然数》,欢迎阅读!
自然数,最小
最小的自然数是0

思考之一:为什么要把0划归自然数。

历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》GB 3100-3102-93《量和单位》11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。 思考之二:最小的一位数是“1”还是“0”

0是最小的自然数,那么最小的一位数是“1”还是“0”?在0没有归入自然数以前大家都很清楚,最小的一位数是1。那么,现在0也成为自然数了,最小的一位数还是1吗?这是许多教师提出的疑问,笔者认为最小的一位数还是1

因为,0表示一个物体也没有,在记数法中是表示空位的一个符号,如3005“0”就分别表示这个数的十位、百位、都是空位。这次调整虽然将“0”划归自然数,然而对几位数的概念并没改变。关于几位数是这样定义的只用一个有效数字表示的数,叫做一位数,只用两个有效数字,其中左边第一个数字是有效数字来表示的数就叫做两位数……”假设0也算作一位数的话,那么最小的两位数是“10”还是“00”呢?那么最小的三位数、四位数……又是多少呢?

《九年义务教育六年制小学数学第八册教师教学用书》98关于几位数是这样叙述的:通常在自然数里,含有几个数位的数,叫做几位数。例如,2,含有一个数位的数,叫做一位数;30含有两个数位的数,叫做两位数;405含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。

所谓最大的几位数,最小的几位数,通常也是在非零自然数有范围来说。所以,最大一位数是9,最小一位数是1;最大两位数是99,最小两位数是10;最大三位数是999,最小三位数是100……”

综上所述,“0”虽然是最小的自然数,但仍然不能称为一位数,更不能称为最小的一位数。

思考之三:自然数的计数单位还是“1”吗?

大家都知道,0是自然数中最小的一个。011112 213……这样继续下去可以得到任意一个自然数。而从自然数的排列顺序可知,后面一个自然数比前面一个自然数多1。因此,任何一个自然数都是由若干个1合并而成,所以1是自然数的单位。0可以看成是由01组成的自然数。

思考之四:0其它非零自然数的倍数吗?

《九年义务教育六年制小学数学》第十册中,关于数的整除约数和倍数的定义并未做任何改变,教材54页就有这样的叙述:因为0也能被2整除,所以0也是偶数。以此类推,0能被所有非零自然数整除,根据约数倍数的定义,0是任何非零自然数的倍数,任何非零自然数都是0的约数。但考虑到研究解质因数、最大公约数、最小公倍数时,一般限于非零自然数范围内,如讲最小公倍数时,是把0排除在


外的。为此,《九年义务教育六年制小学数学》第十册50页明确指出:为了方便,以后在研究约数和倍数时,我们所说的数一般不包括0”这样就避免了一些不必要的麻烦。但过去的一些说法就必须加以纠正了。例如:一个自然数的最小倍数是它本身自然数的约数的个数是有限的等,这样的结论必须纠正。

思考之五:0是不是合数?

过去,在教学中,关于自然数的组成,有两种情况:一是所有奇数和所有的偶数组成自然数集合;二是所有的质数与所有的合数及1也组成自然数集合。现在0也成为了自然数集合的一员,因而有许多教师提出这样的问题:0是不是合数?

前面已经谈过了,以后研究约数和倍数时,我们所说的数一般不包括0”,但作为一种学术研究,进行探讨也未尝不可。笔者以为,0的约数有无数个,根据《九年义务教育六年制小学数学》第十册中关于合数的定义:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。似乎应该把0划归为合数范围,但仔细一想0是个特殊的自然数,因为所有非零自然数都有本身这个约数,如,11的约数,22的约数……,而0这个自然数恰恰少了本身这个约数,因此,也不能归为合数。试想:假设如果0是合数,那么它能用质因数相乘的形式表现出来吗?这就与每个合数都可以写成几个质数相乘的形式生了矛盾。所以,我主张把0划归为既不质数,也不是合数范围。当然了,这需要权威机构和专家们的认定。但我认为,目前在没有明确0是不是合数的情况下,还是以回避为好。

思考之六:任何相邻的两个自然数是互质数对吗?

0没有成为自然数时,这一结论毫无疑问是正确的。现在0也是自然数,我们只要研究“01”这两个相邻的自然数是不是质数,就行了。根据《九年义务教育六年制小学数学》第十册中关于互质数的定义:公约数只有1的两个数,叫做互质数。笔者认为,0的约数有无数个,而1的约数只有一个,那就是它本身。综上所述,01的公约数只有“1”,因此,01是互质数。自然,任何相邻的两个自然数是互质数这个结论也是正确的。


本文来源:https://www.wddqxz.cn/381cc1c2bb4cf7ec4afed033.html

相关推荐