【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《线性代数知识点总结(第5章)》,欢迎阅读!
线性代数知识点总结(第5章)
(一)矩阵的特征值与特征向量 1、特征值、特征向量的定义:
设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。 2、特征多项式、特征方程的定义:
|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。 |λE-A |=0称为矩阵A的特征方程(λ的n次方程)。 注:特征方程可以写为|A-λE|=0 3、重要结论:
(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量
(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。 (3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。 △4、总结:特征值与特征向量的求法 (1)A为抽象的:由定义或性质凑 (2)A为数字的:由特征方程法求解 5、特征方程法:
(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn 注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略) (2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解) 6、性质:
(1)不同特征值的特征向量线性无关 (2)k重特征值最多k个线性无关的特征向量 1≤n-r(λiE-A)≤ki
(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii
(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0
(5)设α是矩阵A属于特征值λ的特征向量,则
A λ α
(二)相似矩阵 7、相似矩阵的定义:
设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B
8、相似矩阵的性质
(1)若A与B相似,则f(A)与f(B)相似 (2)若A与B相似,B与C相似,则A与C相似
(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和) 【推广】
(4)若A与B相似,则AB与BA相似,AT与BT相似,A-1与B-1相似,A*与B*也相似
(三)矩阵的相似对角化 9、相似对角化定义:
f(A) f(λ) α
AT λ /
A-1 λ-1 α
A* |A|λ-1 α
P-1AP(相似)
λ P-1α
如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=
称A可相似对角化。
,
注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量
10、相似对角化的充要条件 (1)A有n个线性无关的特征向量
(2)A的k重特征值有k个线性无关的特征向量 11、相似对角化的充分条件:
(1)A有n个不同的特征值(不同特征值的特征向量线性无关) (2)A为实对称矩阵
12、重要结论:
(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数
(2)若A不可相似对角化,r(A)不一定为非零特征值的个数 (四)实对称矩阵 13、性质
(1)特征值全为实数
(2)不同特征值的特征向量正交
(3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ
(4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ
本文来源:https://www.wddqxz.cn/36d063e70b4c2e3f562763a4.html