人教版八年级数学下册矩形的判定教案

2024-01-27 01:48:26   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《人教版八年级数学下册矩形的判定教案》,欢迎阅读!
矩形,下册,人教,判定,教案
人教版八年级数学下册矩形的判定教案

教学目标 ABACADBC,∴BDDC,∴AE1.掌握矩形的判定方法;(重点) 平行且等于DC,故四边形ADCE是平行四2.能够运用矩形的性质和判定解决实边形.又∵∠ADC90°,∴平行四边形际问题.(难点) ADCE是矩形.

方法总结平行四边形的判定与性质以 教学过程 一、情境导入 我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,们能否找到其他的判定矩形的方法呢?

矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:

1.两条对角线相等且互相平分;

2.四个内角都是直角. 这些性质,对我们寻找判定矩形的方法有什么启示? 二、合作探究 探究点一:有一个角是直角的平行四边形是矩形

如图,在△ABC中,ABACADBC边上的高,AE是△BAC的外角平分线,DEABAE于点E.求证:四边形ADCE是矩形. 解析:首先利用外角性质得出BACBFAEEACAEBC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.

证明:ABAC∴∠B=∠ACB.AE

BAC线∴∠FAEEAC.∵∠B+∠ACB=∠FAE+∠EAC∴∠BACBFAEEACAEBC.又∵DEAB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可. 探究点二:对角线相等的平行四边形是矩形 如图,在平行四边形ABCD中,对角线ACBD相交于点O延长OANONOB,再延长OCM,使CMAN.

求证:四边形NDMB为矩形. 解析:首先由平行四边形ABCD可得OAOCOBOD.ONOB,那么ON

OD.CMANONOM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.

证明:∵四边形ABCD为平行四边形,AOOCODOB.ANCMONOBONOMODOB,∴MNBD,∴四

边形NDMB为矩形. 方法总结证明一个四边形是矩形,题设条件与这个四边形的对角线有关,通常

证这个四边形的对角线相等. 探究点三:有三个角是直角的四边形是矩形 如图,ABCD各内角的平分线分别相交于点EFGH.求证:四边形EFGH是矩形. 解析:利用有三个内角是直角的四边形是矩形证明四边形EFGH是矩形.


证明:∵四边形ABCD是平行四边形,ADBC∴∠DABABC180°.AHBH分别平分∠DAB与∠ABC∴∠HAB12DAB,∠HBA1

2ABC

∴∠HAB+∠HBA12(DAB+∠ABC)

1

2×180°90°∴∠H90°.同理∠HEF=∠F

90°,∴四边形EFGH是矩形.

方法总结题设中隐含多个直角或垂直时,常采用三个角是直角的四边形是矩来判定矩形.

探究点四:矩形的性质和判定的综合运

【类型一】 矩形的性质和判定的运用



如图,O是矩形ABCD的对角线

的交点,EFGH分别是OAOBOCOD上的点,且AEBFCGDH.

(1)求证:四边形EFGH是矩形;

(2)EFGH分别是OAOBOCOD的中点,且DGACOF2cm求矩形ABCD的面积.

解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CDBC,然后根据矩形面积公式求得.

(1)证明:∵四边形ABCD是矩形,OAOBOCOD.AEBFCGDHAOAEOBBFCOCGDODH,即OEOFOGOH,∴四边形EFGH是矩形;

(2)解:GOC的中点,∴GOGC.DGAC,∴∠DGO=∠DGC90°.又∵DGDG,∴△DGC≌△DGO,∴CDOD.FBO中点,OF2cm,∴BO4cm.∵四边形ABCD是矩形,∴DOBO4cmDC4cmDB8cmCBDB2DC243cmS矩形ABCD4×43163(cm2)

方法总结若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,

常证这个四边形的对角线相等且互相平分.

【类型二】 矩形的性质和判定与动点问题



如图所示,在梯形ABCD中,

ADBCB90°AD24cmBC26cm动点P从点A出发沿AD方向向点D1cm/s的速度运动动点Q从点C开始沿着CB方向向点B3cm/s的速度运动PQ分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动

(1)经过多长时间,四边形PQCD是平行四边形?

(2)经过多长时间,四边形PQBA是矩形?

解析:(1)设经过ts时,四边形PQCD是平行四边形,根据DPCQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据APBQ,代入后求出即可.

解:(1)设经过ts,四边形PQCD为平行四边形,即PDCQ,所以24t3t解得t6

(2)设经过t′s,四边形PQBA为矩形,AP

BQ,所以t263t,解得t

132

. 方法总结证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;题设中出现一个直角时,常采用有一角是直角的平行四边形是矩形来判定矩形.

三、板书设计 1.矩形的判定

有一角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形. 2.矩形的性质和判定的综合运用 教学反思

在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本


本文来源:https://www.wddqxz.cn/35d620d79a8fcc22bcd126fff705cc1754275f60.html

相关推荐