等腰三角形性质

2023-01-08 00:08:16   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《等腰三角形性质》,欢迎阅读!
等腰三角形,性质
性质

1.等腰三角形的两个底角度数相等(简写成等边对等角)。

2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成等腰三角形线合一)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。

8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方

判定的方式

定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。

判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

除了以上两种基本方法以外,还有如下判定的方式:

在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。

在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。

在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。

显然,以上三条定理是三线合一的逆定理。


有两条角平分线(或中线,或高)相等的三角形是等腰三角形。


本文来源:https://www.wddqxz.cn/2e9daef4bdeb19e8b8f67c1cfad6195f312be8ef.html

相关推荐