鸡兔同笼

2022-04-06 22:03:32   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《鸡兔同笼》,欢迎阅读!
鸡兔同笼
《鸡兔同笼》教学设计

教学内容:人教版实验教材第112114 教学目标:

1、了解“鸡兔同笼”问题,提供丰富的学习素材,让学生感受古代数学问题的趣味性。 2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会算术方法的一般性。 3、在解决问题过程中培养学生的逻辑推理能力。 教学过程:

一、创设情境,提出问题

师:同学们,听老师们说我们六年3班的同学特别聪明,今天课陈老师给大家带来了一道我国古代的数学趣题来考考你们,有没有信心接受挑战?请看:今有鸡兔同笼,上有8头,下22足。问:鸡有几只?兔有几只?

1、揭题:以前见过这样的题目吗?(见过)见过啊,你说说看这是什么类型的题目?(板书:鸡兔同笼) 2、理解题意:

师:能看懂这道题的意思吗?谁来说说看你读懂了什么?(8只、有22只脚) 师:还有补充吗?(一只鸡有2支脚、一只兔有4支脚)来点掌声

3、学生尝试解决。师:那这道题你们会不会做?(会)很多同学都已经会做了,那就请大家拿出本子自己先试一试。

师:如果觉得自己列算式有困难的,你也可以画画图或者列列表格也可以同桌互相商量商量。

二、自主探索,解决问题 1、教师巡视,交流想法

师:有些同学已经做好了,请你想一想还有没有别的做法? 2、实物投影展示学生的解法: 1)列举法

脚数

8 0 16

7 1 18

6

5 3 22



师:有序的凑,也是一种方法 2)假设法 ①假设全是鸡。 222×8=6

6÷(42=3 鸡:83=5 师:你能说说每步求的是什么吗?

师:你来给同学们解释一下什么“6÷(42”求的就是兔子的只数吗?

生:因为把1只兔看成1只鸡就会少2只脚,6里有32,所以多余的6只脚就可以给3只鸡每只添上两只脚换成3只兔。

师:还有哪些同学的想法跟他是一样的?(举手)你能再来说一说吗? 师:老师也把同学们的这种方法用画图来表示,一起看大屏幕。(教师演示课件) ②师:既然可以假设全是鸡,也就可以假设全是兔。 假设笼子里都是兔。


4×822=10

10÷(42=5 兔:85=3 师:为什么“10÷(42”求的就是鸡的只数呢? 3)列方程

师:还有别的方法也能解决吗? 解:设兔有x只,鸡有(8x)只 4x2×(8x)=22

师:你是根据什么数量关系来列这个方程的? 生:兔脚的只数+鸡脚的只数=共有的22只。 4x162x=22

x=3 鸡:83=5(只) 师:还有别的方法吗? 3、比较四种方法

师:你比较喜欢哪种方法?说说你的理由。

列方程:方程的方法数量关系很明确,容易理解。假设法还需要进行调整、替换,而方程法不用考虑怎么调整,不容易出错。

师:每种方法都有它自己的特点,根据需要选择合适的方法。 4、介绍和解释“孙子算经”中的解法。

1)师:同学们,你们想知道我国古人是怎么解答“鸡兔同笼”问题的吗? 课件演示:早在1500年之前,有一本书叫《孙子算经》,在书中就记录了鸡兔同笼的问题,而且给出了一种很特别的解法。脚数÷2-头数=兔数 头数-兔数=鸡数 师:为什么可以这么算呢?

2)师:美国现代的一名数学家叫波利亚,他也在研究我国古代的“鸡兔同笼”问题,他用一个很有趣的故事来解释这种解法:有一天,有一群鸡和兔在草坪上玩,鸡说,咦,我可以玩金鸡独立,兔子听了也不甘落后,说我也会。于是它也把自己的两只前脚抬了起来。 大家仔细观察一下,这时站在地上的脚数跟原来的相比?(是原来的一半)

再拿这些脚和鸡兔的只数比一比,是不是还多了一些。为什么会多呢?(因为每只兔子还多算了一只脚) 三、拓展延伸 1、龟鹤问题 1师:对于这一类数学问题,后来日本人也在研究他们称之为“龟鹤问题”(课件出示)日本人所说的龟鹤,与我们中国人说的鸡兔是不是一样的呢?(是)谁来说说怎么一样? 2)师:这样看来日本人的“龟鹤问题”和我们古代的“鸡兔同笼问题”的本质是一样的,仅仅是名称不同而已。

3)师:这些数学趣题不但古代人在研究,我们现在也在研究;不仅仅中国人在研究,许多外国人也在研究。这也可以看出中国的数学文化的确是博大精深。

4)师:假如我们不叫它鸡兔同笼,也不叫龟鹤问题,是不是还可以给它取个其它的名字呢?

5)看来这里的鸡不仅仅代表鸡,这里的兔也不仅仅是指兔!【板书:给鸡兔加上红色“”号】

2、人狗问题

1)师:这儿有一首民谣,我们一起来读一读:(课件出示:一队猎人一队狗,两队并成一队走。 数头一共是十二,数脚一共四十二。 2)师:读了这则民谣,你有没有什么话想说?


3)师:你能算出猎人和狗各有多少吗?用你喜欢的方法自己去试一试。 4)学生练习,老师巡视指导

5)学生汇报结果,师:到底对不对呢?我们可以带进原题当中去验算一下。

3、小结:看来鸡兔同笼不仅仅可以解决“鸡兔”同笼的问题,换成乌龟和仙鹤,换成猎人和猎狗,仍然是鸡兔同笼问题,“鸡兔”同笼其实只是这类问题一个模型!在我们的生活中也有一些类似于“鸡兔”同笼的这种模型的数学问题。 四、解决生活中的“鸡兔同笼”问题 1、硬币游戏

2)师:接下来咱们先做一个“猜一猜”的游戏,大家可以边猜边想。 徐老师这儿有一个信封,信封里装一些硬币,有2分的和5分的。你知道里面装了多少钱吗? 3告诉你里面一共有7枚。能知道多少钱吗?那能不能知道里面的钱在什么范围之内呢? 4)出示条件,里面一共有32分。算:2分和5分各有几枚? 5)学生算, 校对

那么这个问题与鸡兔问题有联系吗?(课件演示)

2、师:课前。老师还收集了一些生活中类似于鸡兔同笼的数学问题,大家一起来看看。(课件出示)

1)车棚里共有自行车和三轮车40辆,数数共110个轮子。自行车和三轮车各几辆? 2)六(3)38人去公园划船,大船坐6人,小船坐4人,共租了8条船,每条船都坐满了。大船、小船各租了几条?

3)一个工程队修一条公路,晴天每天可以修20米,雨天每天可以修12米,15天共修路228米,晴天有几天?雨天呢? 4教具厂要用长度相等的木条钉制三角形和正方形学具,制作55个学具共用了190根木条。制作三角形学具用了多少条? 学生自己选择12题解决。 五、课堂小结

这节课我们一起研究了什么问题?你有什么收获?



情境引入,旧知铺垫,引出课题

1、(播放课件,画面中有2只兔子,3只鸡)

2、让学生观察课件的封面,数一数上面有多少只鸡和兔,那它们一共有多少条腿?请你动动脑筋,你能想出多少种不同的方法?(学生小组讨论后集体汇报 老师板书:

第一种:4×23×2=14(条) 第二种:4×52×3=14(条) 第三种:2×52×2=14(条) 第四种:2×7=14(条)

(学生若没说出第四种也可,关键引导学生说出第2种和第3种列式,让学生说出这样列式的算理。)

3、小结第2种和第3种列式的算法,强调其中的数学思想——假设

4、师:如果现在既不知道有多少只鸡,也不知有多少只兔,只知道鸡和兔关在了一起,告诉你有几个头,几条腿,让你求出鸡和兔分别有多少只?这样的题你遇到过吗? (板书课题:鸡兔同笼)


本文来源:https://www.wddqxz.cn/2cee680c8e9951e79a892712.html

相关推荐