【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《乘法公式》,欢迎阅读!
乘法公式
A 内容提要
1. 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总
结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。 2. 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
222
完全平方公式:(a±b)=a±2ab+b, 平方差公式:(a+b)(a-b)=a2-b2
立方和(差)公式:(a±b)(a2ab+b2)=a3±b3 3.公式的推广:
① 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd
即:多项式平方等于各项平方和加上每两项积的2倍。
② 二项式定理:(a±b)3=a3±3a2b+3ab2±b3
(a±b)4=a4±4a3b+6a2b2±4ab3+b4)
(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5) „„„„
注意观察右边展开式的项数、指数、系数、符号的规律 ③ 由平方差、立方和(差)公式引伸的公式
(a+b)(a3-a2b+ab2-b3)=a4-b4 (a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5
(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6 „„„„
注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n为正整数
-----
(a+b)(a2n1-a2n2b+a2n3b2-„+ab2n2-b2n1)=a2n-b2n
---
(a+b)(a2n-a2n1b+a2n2b2-„-ab2n1+b2n)=a2n+1+b2n+1 类似地:
-----
(a-b)(an1+an2b+an3b2+„+abn2+bn1)=an-bn 4. 公式的变形及其逆运算
由(a+b)2=a2+2ab+b2 得 a2+b2=(a+b)2-2ab
由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)
由公式的推广③可知:当n为正整数时
an-bn能被a-b整除, a2n+1+b2n+1能被a+b整除,
a2n-b2n能被a+b及a-b整除。
B 例题
例1. 己知x+y=a xy=b
求 ①x2+y2 ②x3+y3 ③x4+y4 ④x5+y5 解: ①x2+y2=(x+y)2-2xy=a2-2b
②x3+y3=(x+y)3-3xy(x+y)=a3-3ab
③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2 ④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4) =(x+y)[x4+y4-xy(x2+y2)+x2y2] =a[a4-4a2b+2b2-b(a2-2b)+b2] =a5-5a3b+5ab2
例2. 求证:四个連续整数的积加上1的和,一定是整数的平方。 证明:设这四个数分别为a, a+1, a+2, a+3 (a为整数)
a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1 =(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2 ∵a是整数,整数的和、差、积、商也是整数 ∴a2+3a+1是整数 证毕 例3. 求证:2222+3111能被7整除
证明:2222+3111=(22)111+3111=4111+3111 根据 a2n+1+b2n+1能被a+b整除,(见内容提要4) ∴4111+3111能被 4+3整除 ∴2222+3111能被7整除
例4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律 解:∵(10a+5)2=100a2+2×10a×5+25=100a(a+1)+25
∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。
如:152=225 幂的百位上的数字2=1×2), 252=625 (6=2×3),
352=1225 (12=3×4) 452=2025 (20=4×5) „„
本文来源:https://www.wddqxz.cn/2049f013ef06eff9aef8941ea76e58fafab045e2.html