数学分析

2023-10-02 16:08:10   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《数学分析》,欢迎阅读!
数学分析


数学分析

1.引言

数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。微积分学是微分学和积分学的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问[1]

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。

2.发展历史

阿基米德:在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了几何级数的和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷揭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学的早期,12世纪的数学家婆什加洛第二给出了导数的例子。

数学分析的创立始于17世纪以牛顿(NewtonI.)和莱布尼兹(LeibnizeG.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科而人们仍以分析统称之。数学分析亦简称分析。

3研究对象

牛顿:数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式牛顿莱布尼兹公式反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用

2




科学技术领域的大门,其影响所及,难以估量。因此,微积分的出现与发展被认为是人类文明史上划时代的事件之一。与积分相比,无穷级数也是微小量的叠加与积累,只不过取离散的形式(积分是连续的形式)。因此,在数学分析中,无穷级数与微积分从来都是密不可分和相辅相成的。

4.基本方法

欧拉:数学分析的基本方法是极限的方法,或者说是无穷小分析。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在1819世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感[2]。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析

[3]

的概念与其在客观世界的原型以及人的直觉区分开来

柯西:因而,从19世纪初开始了一个一个把分析算术化(使分析成为一种像算术那样的演绎系统)为特征的新的数学分析的批判改造时期。在极限的基础上,柯西定义了函数的连续性、导数、连续函数的积分和级数的收敛性(后来知道,波尔查诺(Bolzano)同时也做过类似的工作)进一步,迪利克莱于(Dirichlet)1837年提出了函数的严格定义,魏尔斯特拉斯引进了极限的ε-δ定义。基本上实现了分析的算术化,使分析从几何直观的局限中得到了“解放”,从而驱散了1718世纪笼罩在微积分外面的神秘云雾。

5学习数学分析

数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节[3]。继而在此基础上,黎曼(Riemann)1854和达布(Darboux)1875年对有界函数建立了严密的积分理论19世纪后半叶,戴德金(Dedekind)等人完成了严格的实数理论。至此,数学分析的理论和方法完全建立在牢固的基础之上,基本上形成了一个完整的体系,也为20世纪现代分析的发展铺平了道路[4]



2


本文来源:https://www.wddqxz.cn/1917b8a4b9f3f90f76c61b8d.html

相关推荐