【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《两个独立样本的4种非参数检验方法》,欢迎阅读!
两个独立样本的4种非参数检验方法
1、两独立样本的Mann-Whitney U检验
定义:两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
Mann-Whitney U检验(Wilcoxon秩和检验)主要通过对平均秩的研究来实现推断。
秩:将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。
相同观察值(即相同秩,ties),取平均秩。 两独立样本的Mann-Whitney U检验的零假设 H0:两个样本来自的独立总体均值没有显著差异。
将两组样本(X1 X2 …… Xm)(Y1 Y2 …… Yn)混合升序排序,每个数据将得到一个对应的秩。
计算两组样本数据的秩和Wx ,Wy 。 N=m+n Wx+Wy= N(N+1)/2
如果H0成立,即两组分布位置相同,Wx应接近理论秩和 m(N+1)/2; Wy应接近理论秩和n(N+1)/2)。
如果相差较大,超出了预定的界值,则可认为H0不成立。 2、两独立样本的K-S检验
两独立样本的K-S检验与单样本K-S检验类似。
其零假设H0:样本来自的两独立总体分布没有显著差异。
检验统计量 D 为两个样本秩的累积分布频率的最大绝对差值。当D较小时,两样本差异较小,两样本更有可能取自相同分布的总体;反之,当D较大时,两样本差异变大,两样本更有可能取自不同分布。
3、两独立样本的游程检验(Wald-Wolfwitz Runs)
零假设是H0:为样本来自的两独立总体分布没有显著差异。
样本的游程检验中,计算游程的方法与观察值的秩有关。首先,将两组样本混合并按照升序排列。在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。
SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为两个样本来自的总体分布有显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设H0,认为两个样本来自的总体分布无显著差异。
4、两独立样本的极端反应检验(Moses Extreme Reactions) 零假设H0:样本来自的两独立总体分布没有显著差异。 两组样本,一组为控制样本,一组为实验样本
跨度(Span):将两组样本混合并按升序排列;然后找出控制样本最低秩和最高秩之间所包含的观察值个数。为控制极端值对分析结果的影响,也可以先去掉样本两个最极端的观察值后再求跨度,这个跨度称为截头跨度。
两独立样本的极端检验计算跨度和截头跨度。如果跨度或截头跨度很小,则表明两个样本数据无法充分混合,可以认为实验样本存在极端反应。
SPSS自动计算跨度和截头跨度,依据分布表给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为两个样本来自的总体分布有显著差异;否则,则不能拒绝零假设H0,认为两个样本来自的总体分布无显著差异。
本文来源:https://www.wddqxz.cn/14b76e276f85ec3a87c24028915f804d2b1687e0.html