有理数和无理数的定义及分类

2023-12-26 15:04:17   文档大全网     [ 字体: ] [ 阅读: ]

#文档大全网# 导语】以下是®文档大全网的小编为您整理的《有理数和无理数的定义及分类》,欢迎阅读!
无理数,有理数,定义,分类
有理数和无理数的定义及分类

有理数为整数和分数的统称,不是有理数的实数称为无理数。接下来给大家分享有理数和无理数的定义及分类。 有理数的定义

有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当abb小于a,记作a>bb。任何两个不相等的有理数都可以比较大小。 有理数的分类

()按有理数的定义分类:

(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数包括正整数、0、负整数。其中零和正整数统称自然数。

(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

()按有理数的性质分类:

(1)正有理数:除了负数、0、无理数的数字都是正有理数。正有理数还被分为正整数和正分数。

(2)00是介于-11之间的整数,是最小的自然数,也是有理数。

(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。 无理数的定义

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、πe(其中后两者均为超越数)等。

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,


无理数就是10进制下的无限不循环小数,如圆周率等。


本文来源:https://www.wddqxz.cn/0e3c4b505b1b6bd97f192279168884868662b861.html

相关推荐