【#文档大全网# 导语】以下是®文档大全网的小编为您整理的《双十字相乘法》,欢迎阅读!
双十字相乘法
分解形如ax^2+bxy+cy^2+dx+ey+f 的二次六项式 在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则。则原式=(mx+py+j)(nx+qy+k) 目录
基本介绍
方法:双十字相乘的迁移 所以
基本介绍
方法:双十字相乘的迁移 所以 展开
编辑本段基本介绍 适用状况
双十字相乘法是一种因式分解方法。对于型如
Ax^2+Bxy+Cy^2+Dx+Ey+F 的多项式的因式分解,常采用的方法是待定系数法。这种方法运算过程较繁。对于这问题,若采用“双十字相乘法”,就能很容易将此类型的多项式分解因式。 例子
例:3x^2+5xy-2y^2+x+9y-4=(x+2y-1)(3x-y+4) (3x^2表示3X的二次方)
因为3=1×3,-2=2×(-1),-4=(-1)×4,
而1×(-1)+3×2=5,2×4+(-1)(-1)=9,1×4+3×(-1)=1
编辑本段方法:双十字相乘的迁移
分解二次五项式
要诀:把缺少的一项当作系数为0,0乘任何数得0, 例:ab+b^2+a-b-2
=0×1×a^2+ab+b^2+a-b-2 =(0×a+b+1)(a+b-2) =(b+1)(a+b-2)
分解四次五项式
提示:设x^2=y,用拆项法把cx^2拆成mx^2与ny之和。
例:2x^4+13x^3+20x^2+11x+2 =2y^2+13xy+15x^2+5y+11x+2 =(2y+3x+1)(y+5x+2) =(2x^2+3x+1)(x^2+5x+2) =(x+1)(2x+1)(x^2+5x+2)
简单来说:
1.因式分解法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax^2+bxy+cy^2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x^2-7xy-22y^2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为 2x^2-(5+7y)x-(22y^2-35y+3), 可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为 即
-22y^2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解 编辑本段所以
原式=〔x+(2y-3)〕〔2x+(-11y+1)〕 =(x+2y-3)(2x-11y+1).
(x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y^2+35y-3. 这就是所谓的双十字相乘法.
用双十字相乘法对多项式ax^2+bxy+cy^2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax^2+bxy+cy^2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 2.求根法
我们把形如anx^n+a(n-1)x^(n-1)+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x^2-3x+2,g(x)=x^5+x^2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;
f(-2)=(-2)^2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
本文来源:https://www.wddqxz.cn/006c4a47bb4ae45c3b3567ec102de2bd9605def5.html